
ECE 372 — Microcontroller Design Analog to Digital Conversion

ECE 372 – Microcontroller Design

Analog to Digital Conversion (ADC)

- Analog to Digital Converter (ADC)
 - □ Use *n* bits to represent voltage input
 - Stepwise conversion/quantization of infinite voltage levels to discrete binary encodings
 - Quantization error is difference between encoded value and real voltage input

- ADC Range
- $= V_{REF+} V_{REF-}$
- ADC Resolution
- $= (V_{REF+} V_{REF-})/(2^{n} 1)$
- □ **Note**: resolution is <u>NOT</u> the same as accuracy

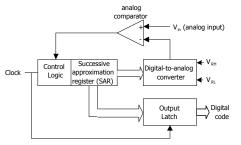
ECE 372 – Microcontroller Design

Analog to Digital Conversion (ADC)

- ADC typically uses a low reference voltage (V_{REF-}) and a high reference voltage (V_{REF+}) to perform conversion
 - □ Most ADCs are *ratiometric*
 - $\circ~$ An analog input of $V_{\text{REF-}}$ is converted to digital code 0
 - $\,\circ\,$ An analog input of V_{REF+} is converted to digital code 2^n-1
 - □ The A/D conversion result k corresponds to the following analog input
 - \circ V_K = V_{REF-} + k*(ADC Resolution)
 - $V_k = V_{REF-} + k*((V_{REF+} V_{REF-}) * k)/(2^n 1)$

$V_{REF+} = 7.5V$	11111
7.0V	1110
6.5V	1101
6.0V	1100
5.5V	1011
5.0V	1010
4.5V	1001
4.0V	1000
3.5V	0111
3.0V	0110
2.5V	0101
2.0V	0100
1.5V	0011
1.0V	0010
0.5V	0001
$V_{RFF} = 0V$	
- KET- UV	0000

Proportionality/ ratiometric


ECE 372 – Microcontroller Design

Analog to Digital Conversion (ADC)

- $\circ~$ Given a 10-bit ADC with $\rm V_{REF^-}$ = 1 V and $_{\rm VREF+}$ = 4V, what voltage corresponds to a digital value of 720?
 - \circ V₇₂₀ = 1V + 720* (5 1) / (2¹⁰ 1) = 3.11 V

ECE 372 – Microcontroller Design Analog to Digital Conversion (ADC) – Successive Approximation

- Successive Approximation Conversion Method
 - □ Most commonly used A/D conversion method for 8- and 16-bit microcontrollers
 - □ Procedure:
 - o Initialize all bits in register to 0
 - o Starting with most significant bit (MSB) to least significant bit
 - □ Set bit to 1
 - □ If current voltage is greater than voltage input, reset bit to 0

ECE 372 – Microcontroller Design Analog to Digital Conversion (ADC) – Successive Approximation Example

- Successive Approximation Conversion Method
 - □ Given an 8-bit ADC with an analog input whose voltage can range from 0 (V_{REF-}) to 15 (V_{REF+}) volts, using the successive approximation conversion approach, find the encoding for an input of 5 V.

V _{estimated} = 7.5 volts > 5 0 0 0 0 0 0 0 0	$V_{estimated} = 5.16 \text{ volts} > 5 \ \boxed{0} \ \boxed{1} \ \boxed{0} \ \boxed{1} \ \boxed{0} \ \boxed{0} \ \boxed{0} \ \boxed{0}$
V _{estimated} = 3.75 volts < 5 0 1 0 0 0 0 0 0	V _{estimated} = 4.93 volts < 5 0 1 0 1 0 1 0 0
V _{estimated} = 5.63 volts > 5 0 1 0 0 0 0 0 0	V _{estimated} = 5.05 volts > 5 0 1 0 1 0 1 0 0
V _{estimated} = 4.69 volts < 5 0 1 0 1 0 0 0 0	V _{estimated} = 4.99 volts < 5 0 1 0 1 0 1 0 1

ECE 372 – Microcontroller Design

ADC Configuration Registers

- **Basic ADC Configuration**
 - □ AD1CON1:
 - o ADON: enable ADC
 - o FORM: controls format of digital encoding
 - o SSRC: controls sampling and conversion periods
 - o ASAM: configures auto-sampling mode that internally controls sampling/conversion process (recommended)
 - o SAMP: controls start of ADC conversion
 - □ AD1CON2:
 - VCFG: configures voltage reference source
 - o SMPI: configures how many samples/conversions will lead to setting ADxIF
 - o BUFM: configures ADC conversion buffer
 - o ALTS: configures using MUXA or alternating between MUXA and MUXB
 - o ADRC: ADC clock source
 - SAMC: Number of sampling cycles (T_{AD}) for ADC sampling period
 - o ADCS: Number of conversion cycles (T_{CY}) for ADC conversion period

ECE 372 — Microcontroller Design ADC Configuration Registers

Basic ADC Configuration

- □ AD1CON3:

 - CHOSA: configures which analog input (ANx) is connected to MUXA
 CHOSB: configures which analog input (ANx) is connected to MUXB
- - o Configures ports on PIC24F as analog (0) or digital (1)
 - o Each ANx input is associated with 1 bit in AD1PCFG register
- - o Interrupt flag for ADC
- □ AD1BUF0 AD1BUF15:
 - o Registers for reading result of ADC conversion
 - o 16 entries within ADC conversion buffer
 - o ADC configurations control how buffer is used
- □ *This sure doesn't look basic* ⊗